Public

e PeckShield

SMART CONTRACT AUDIT REPORT

for

AVA Daily Earn Lockup

Prepared By: Xiaomi Huang

PeckShield
November 27, 2025

1/19 PeckShield Audit Report #: 2025-187

contact@peckshield.com

Public

Document Properties

Client AVA

Title Smart Contract Audit Report

Target AVA Lockup

Version 1.0.1

Author Xuxian Jiang

Auditors Matthew Jiang, Xuxian Jiang

FEVENEGHOA Xiaomi Huang

AVOI NGRS Xuxian Jiang

Classification Bl

Version Info

Version Date Author(s) Description
1.0.1 November 27, 2025 | Xuxian Jiang | Post-Final Release #1
1.0 November 9, 2025 | Xuxian Jiang | Final Release
1.0-rcl November 8, 2025 | Xuxian Jiang | Release Candidate #1

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Xiaomi Huang

+86 183 5897 7782

contact@peckshield.com

2/19

PeckShield Audit Report #: 2025-187

Public

Contents
1 Introduction 4
1.1 About AVA Daily Earn Lockup 4
1.2 About PeckShield 5
1.3 Methodology e 5
1.4 Disclaimer e 7
2 Findings 10
2.1 Summary . ..o 10
22 Key Findings 11
3 Detailed Results 12
3.1 Possibly Missing Last Lockup Timestamp Update 12
3.2 Possibly Double Rewards From Multiple User Deactivation 14
3.3 Timely Reward Claims Upon Possible APR Change 15
3.4 Trust Issue of Admin Keys L 16
4 Conclusion 18
References 19

3/19 PeckShield Audit Report #: 2025-187

Public

1 Introduction

Given the opportunity to review the design document and related smart contract source code of
the Daily Earn Lockup contract in AvA, we outline in the report our systematic approach to evaluate
potential security issues in the smart contract implementation, expose possible semantic inconsis-
tencies between smart contract code and design document, and provide additional suggestions or
recommendations for improvement. Our results show that the given version of smart contracts can
be further improved due to the presence of several issues related to either security or performance.

This document outlines our audit results.

1.1 About AVA Daily Earn Lockup

The Daily Earn Lockup support in AVA manages a token lockup and reward system with multiple mem-
bership tiers. Users may lock ERC20 tokens for fixed periods to earn rewards, with higher membership
tiers offering better terms and possible NFT-based bonus rates. It supports delayed and immediate
withdrawals (the latter incurring a small fee), as well as administrative controls for pausing, user ac-
tivation/deactivation, and updating membership parameters. The basic information of AVA Lockup

is as follows:

Table 1.1: Basic Information of AVA Lockup

Item Description

Issuer | AVA
Type | Ethereum Smart Contract
Platform | Solidity
Audit Method | Whitebox
Latest Audit Report | November 27, 2025

In the following, we show the Git repository of reviewed files and the commit hash value used in

this audit.

e https://github.com/AVA-Foundation/ava-lockup-contracts.git (8f00bdd)

4/19 PeckShield Audit Report #: 2025-187

Public

And here is the commit ID after all fixes for the issues found in the audit have been checked in. The
audited Daily Earn Lockup contract has an Ethereum deployment at 0x5CC235Eca665ED2A752802ed784EAe373e6B0Beb

, which has its owner and community fee wallet configured to 0x58653987Ff3837ADBE6383F670£6935f cDE521b0
and 0xE234857A497deC£6239911C8190c195a0eaBB638, respectively.

e https://github.com/AVA-Foundation/ava-lockup-contracts.git (d807a5f)

1.2 About PeckShield

PeckShield Inc. [9] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

High Medium

Medium

Impact

Low Medium

High Medium

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on the OWASP Risk Rating
Methodology [8]:

e Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

e Impact measures the technical loss and business damage of a successful attack;

e Severity demonstrates the overall criticality of the risk.

5/19 PeckShield Audit Report #: 2025-187

https://etherscan.io/address/0x5CC235Eca665ED2A752802ed784EAe373e6B0Beb
https://etherscan.io/address/0x5CC235Eca665ED2A752802ed784EAe373e6B0Beb
https://etherscan.io/address/0x5CC235Eca665ED2A752802ed784EAe373e6B0Beb
https://etherscan.io/address/0x5CC235Eca665ED2A752802ed784EAe373e6B0Beb
https://etherscan.io/address/0x5CC235Eca665ED2A752802ed784EAe373e6B0Beb
https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

Table 1.3: The Full Audit Checklist

Category

Basic Coding Bugs

Checklist Items
Constructor Mismatch

Ownership Takeover

Redundant Fallback Function

Overflows & Underflows

Reentrancy

Money-Giving Bug

Blackhole

Unauthorized Self-Destruct

Revert DoS

Unchecked External Call

Gasless Send

Send Instead Of Transfer

Costly Loop

(Unsafe) Use Of Untrusted Libraries

(Unsafe) Use Of Predictable Variables

Transaction Ordering Dependence

Deprecated Uses

Semantic Consistency Checks

Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review

Functionality Checks

Authentication Management

Access Control & Authorization

Oracle Security

Digital Asset Escrow

Kill-Switch Mechanism

Operation Trails & Event Generation

ERC20 Idiosyncrasies Handling

Frontend-Contract Integration

Deployment Consistency

Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array

Using Fixed Compiler Version

Making Visibility Level Explicit

Making Type Inference Explicit

Adhering To Function Declaration Strictly

Following Other Best Practices

6/19

PeckShield Audit Report #: 2025-187

Public

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

To evaluate the risk, we go through a checklist of items and each would be labeled with a
severity category. For one check item, if our tool or analysis does not identify any issue, the contract
is considered safe regarding the check item. For any discovered issue, we might further deploy
contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

e Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static

code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues

found by our tool.

e Semantic Consistency Checks: We then manually check the logic of implemented smart con-

tracts and compare with the description in the white paper.

e Advanced DeFi Scrutiny: We further review business logics, examine system operations, and

place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

e Additional Recommendations: We also provide additional suggestions regarding the coding and

development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [7], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings. Moreover, in case there is an issue that
may affect an active protocol that has been deployed, the public version of this report may omit
such issue, but will be amended with full details right after the affected protocol is upgraded with

respective fixes.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence

of any further findings of security issues. As one audit-based assessment cannot be considered

7/19 PeckShield Audit Report #: 2025-187

Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category
Configuration

Summary
Weaknesses in this category are typically introduced during
the configuration of the software.

Data Processing Issues

Weaknesses in this category are typically found in functional-
ity that processes data.

Numeric Errors

Weaknesses in this category are related to improper calcula-
tion or conversion of numbers.

Security Features

Weaknesses in this category are concerned with topics like
authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State

Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management

Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues

Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logic

Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup

Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters

Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues

Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices

Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

8/19

PeckShield Audit Report #: 2025-187

Public

comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit

should not be used as investment advice.

9/19 PeckShield Audit Report #: 2025-187

Public

2 Findings

2.1 Summary

Here is a summary of our findings after analyzing the implementation of the Daily Earn Lockup
contract in AvA. During the first phase of our audit, we study the smart contract source code and run
our in-house static code analyzer through the codebase. The purpose here is to statically identify
known coding bugs, and then manually verify (reject or confirm) issues reported by our tool. We
further manually review business logic, examine system operations, and place DeFi-related aspects

under scrutiny to uncover possible pitfalls and/or bugs.

Severity ‘ # of Findings
Critical
High
Medium

Low

Informational
Total

A IO IN|IN| OO

We have so far identified a list of potential issues: some of them involve subtle corner cases that might
not be previously thought of, while others refer to unusual interactions among multiple contracts.
For each uncovered issue, we have therefore developed test cases for reasoning, reproduction, and/or
verification. After further analysis and internal discussion, we determined a few issues of varying
severities need to be brought up and paid more attention to, which are categorized in the above
table. More information can be found in the next subsection, and the detailed discussions of each of

them are in Section 3.

10/19 PeckShield Audit Report #: 2025-187

Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can

be improved by resolving the identified issues (shown in Table 2.1), including 2 medium-severity

vulnerabilities and 2 low-severity vulnerabilities.

Table 2.1: Key AVA Lockup Audit Findings

ID Severity Title | Category Status
PVE-001 | Medium | Possibly Missing Last Lockup Timestamp | Business Logic Resolved
Update
PVE-002 Low Possibly Double Rewards From Multiple User | Business Logic Resolved
Deactivation
PVE-003 Low Timely Reward Claims Upon Possible APR | Coding Practices | Resolved
Change
PVE-004 | Medium | Trust Issue of Admin Keys Security Features | Mitigated

Beside the identified issues, we emphasize that for any user-facing applications and services, it is

always important to develop necessary risk-control mechanisms and make contingency plans, which

may need to be exercised before the mainnet deployment. The risk-control mechanisms should kick

in at the very moment when the contracts are being deployed on mainnet. Please refer to Section 3

for details.

11/19

PeckShield Audit Report #: 2025-187

268
269

271
272

274

276

277
278

Public

3 Detailed Results

3.1 Possibly Missing Last Lockup Timestamp Update

e |ID: PVE-001 e Target: DailyEarnLockUp

e Severity: Medium e Category: Business Logic [6]

o Likelihood: Medium e CWE subcategory: CWE-841 [3]
e Impact: Medium

Description

For each user, the audited token lockup contract maintains the last lockup timestamp to accurately
calculate the accrued rewards. While examining the logic to update the last lockup timestamp, we
notice an issue that may miss the timely update when a new lockup is added or a previous one is
canceled.

To elaborate, we show below the implementation of the related 1ockup() routine. This routine
is invoked when a new lockup is added. In particular, if the user has a previous lockup, the earned
rewards may be claimed. However, our analysis shows that if the earned rewards amount is o, the
last timestamp is not updated (line 599). As a result, the new lockup is effectively recorded with
the previous timestamp as the latest timestamp, which has undesirable implications in calculating
the earned rewards for the new lockup. To fix, there is a need to always update the new lockup
timestamp with block.timestamp when earned rewards are claimed.

function lockup(uint256 lockedAmount) external whenNotPaused nonReentrant {

_validateLockupConditions (lockedAmount , msg.sender) ;

// Transfer lockup tokens from the walletAddress to the contract.

lockupToken.safeTransferFrom(msg.sender, address(this), lockedAmount);
string memory userId = _getUserId(msg.sender);
// If the walletAddress already has a lockup, send him his earned tokens

// before increasing the lockedAmount.
if (userIdToLockupStats[userId].lockedAmount > 0) {

12/19 PeckShield Audit Report #: 2025-187

279
280
281
282
283

285
286

288
289

291
292

575
576
577
578
579
580
581
582

584
585
586
587
588
589
590
591
592

594
595
596
597
598
599
600
601

Public

_claimReward (userId, msg.sender);
} else {
// For a newbie, initialize lastTimeStamp to current time.

userIdToLockupStats [userId].lastTimeStamp = block.timestamp;
// Increase the lockedAmount.
userIdToLockupStats [userId].lockedAmount += lockedAmount;

// Update the total locked amount.
totalLockedAmount += lockedAmount;

emit EvtLockup(msg.sender, lockedAmount);

LiSth1g 3.1: DailyEarnLockUp: : lockup ()

function _claimReward (

string memory userlId,

address walletAddress

) private returns (uint256) {

// De-activated user cannot get any earn
if (userIdToLockupStats[userId].deactivated) {

return O0;

}
(
uint256 earn,
uint256 timeElapsedSincelLastClaim
) = getEarnAmountFromLockupStats (walletAddress);

if (earn > 0) {
// Update lastTimeStamp to the timestamp rounded up to the last full day.
LockupStats storage stats = userIdToLockupStats[userId];
stats.lastTimeStamp += timeElapsedSincelLastClaim;

stats.earnedAmount += earn;

lockupToken.safeTransfer (walletAddress, earn);
emit EvtClaim(walletAddress, earn);
return earn;
} else {
// If no earn, return O.

return O0;

LiSth]g 3.2: DailyEarnLockUp::_claimReward()

Furthermore, when a previous withdrawal request is canceled, we shall need to update the lockup

timestamp with block.timestamp as well.

Recommendation Revise the above-mentioned routines to properly update the user's lockup

timestamp when the earned rewards are timely calculated and claimed.

13/19

PeckShield Audit Report #: 2025-187

608
609
610
611
612
613

615
616
617
619
621

623
624

Public

Status This issue has been fixed in the following commit: feaf13s.

3.2 Possibly Double Rewards From Multiple User Deactivation

e |ID: PVE-002 e Target: DailyEarnLockUp

e Severity: Low e Category: Business Logic [6]

e Likelihood: Low e CWE subcategory: CWE-841 [3]
e Impact: Medium

Description

To manage the eligibility of participating users, the lockup contract allows the authorized managers
to activate or deactivate users on a need basis. When a user is deactivated, the rewards are timely
accumulated up to the deactivation timestamp. Our analysis shows the rewards from withdrawal
requests may be repeatedly calculated for each deactivation.

To elaborate, we show below the implementation of the related deactivateUser() routine. It
has a rather straightforward logic in claiming accrued rewards and marking the deactivation state.
Note the rewards-claiming helper routine _claimReward() (line 617) does timely update the last
lockup timestamp so that the rewards will be properly calculated. But another helper routine
_claimRewardFromWithdrawRequest () (line 619) does not, which may lead to double rewards if a user
is deactivated once, next activated, and then deactivated again.

function deactivateUser (string memory userId) external isAuthorized {
require (bytes (userId).length > 0, "Invalid userId");
require (
userIdToLockupStats [userId].deactivated == false,
"userId already deactivated"

) 8

// Auto send any accrued rewards before deactivation.
address walletAddress = userIdToWalletAddress[userId];
_claimReward (userId, walletAddress);
_claimRewardFromWithdrawRequest (walletAddress) ;

userIdToLockupStats [userId].deactivated = true;

emit EvtDeactivateUser (userId);
LiSth1g 3.3: DailyEarnLockUp: :deactivateUser ()

Recommendation Revise the above deactivateUser() routine to ensure rewards are always

correctly accumulated when a user is deactivated.

14/19 PeckShield Audit Report #: 2025-187

https://github.com/AVA-Foundation/ava-lockup-contracts/commit/feaf135

701
702
703
704
705
706
707
708
709

711

713
714

Public

Status This issue has been fixed in the following commit: a11a999.

3.3 Timely Reward Claims Upon Possible APR Change

e |D: PVE-003 e Target: DailyEarnLockUp

e Severity: Low e Category: Coding Practices [5]
o Likelihood: Low e CWE subcategory: CWE-563 [2]
e Impact: Medium

Description

As mentioned earlier, the audited contract manages the token lockup and reward with multiple
membership tiers and each membership tier may be configured with various reward rates. When a
user's membership tier or related parameters are adjusted, there is a need to timely accumulate user
rewards before applying the new settings. While reviewing current setter routines, we notice two
specific ones need to be improved.
To elaborate, we show below the implementation of one setter routine, i.e., updateUserIdToAmountNFTs

0. As the name indicates, this routine is used to updated the number of NFTs for the given user id.
When a user's NFT amount is updated, the rewards may be affected. With that, we need to accu-
mulate the rewards before updating the user's NFT amount. Similarly, when the user’'s membership
tier or type is updated (via updateUserIdToMembershipType()), we also need to accumulate rewards for
both locked amount and withdraw-requested amount.

function updateUserIdToAmountNFTs (
string calldata userld,
uint256 amountNFTs
) external isAuthorized {
require (bytes (userId).length > 0, "Invalid userId");
require (
userIdToMembershipType [userId] == MembershipType.SmartDiamond,
"Not SmartDiamond membership type"

) §
userIdToAmountNFTs [userId] = amountNFTs;

emit EvtUpdateUserIdToAmountNFTs (userId, amountNFTs);

LiSth1g 3.4: DailyEarnLockUp: :updateUserIdToAmountNFTs ()

Recommendation Revise the above-mentioned setter routines to properly accrue rewards from

both locked amount and requested amount for withdrawal.

15/19 PeckShield Audit Report #: 2025-187

https://github.com/AVA-Foundation/ava-lockup-contracts/commit/a11a999

Public

Status This issue has been fixed in the following commit: d807a5t.

3.4 Trust Issue of Admin Keys

e |ID: PVE-004 e Target: DailyEarnLockUp

e Severity: Medium e Category: Security Features [4]
e Likelihood: Medium e CWE subcategory: CWE-287 [1]
e Impact: Medium

Description

In the audited pailyEarnLockUp contract, there is a special administrative account, i.e., owner. This
owner account plays a critical role in governing and regulating the lockup-wide operations (e.g.,
configure withdrawal fee, manage authorizers, and withdraw contract funds). It also has the privilege
to control or govern the flow of assets within the protocol contracts (e.g., perform the emergency
withdrawal). In the following, we examine the privileged account and their related privileged accesses

in current contracts.

755 function withdrawByAdmin (

756 address recipient,

757 uint256 amount

758) external isOwner {...}

760 function takeImmediateWithdrawalFeeCollected(
761 address recipient,

762 uint256 amount

763) external isOwner {...}

765 /%%

766 * Onotice Set the membership type for a specific wallet address.
767 */

768 function setMembershipTypeToCondition (

769 MembershipType membershipType,

770 LockupCondition memory lockupCondition
771) external isOwner {...}

773 /x*

774 * @notice Set the immediate withdrawal fee
775 */

776 function setImmediateWithdrawalFee (

77 uint256 _immediateWithdrawalFee

778) external isOwner {...}

780 /**

781 * @notice Set the community wallet address
782 */

16/19 PeckShield Audit Report #: 2025-187

https://github.com/AVA-Foundation/ava-lockup-contracts/commit/d807a5f

783

785
786
787
788
789
790

792
793
794

796
797
798

Public

function setCommunityWallet (address _communityWallet) external

/ * %
* Q@notice Set the maximum total locked amount.
*/
function setMaxTotalLockedAmount (
uint256 _maxTotalLockedAmount

) external isOwner {...}

function updateCommonMinLockupAmount (
uint256 newMinLockupAmount

) external isOwner {...}

function updateCommonWithdrawPeriod (
uint256 newWithdrawPeriodInSeconds

) external isOwner {...}

isOwner {...}

Listing 3.5: Example Privileged Operations in pailyEarnLockUp

We understand the need of the privileged functions for proper contract operations, but at the

same time the extra power to these privileged accounts may also be a counter-party risk to the
contract users. Therefore, we list this concern as an issue here from the audit perspective and highly

recommend making these privileges explicit or raising necessary awareness among protocol users.

Recommendation Promptly transfer the privileged account to the intended pao-like governance

tended trustless nature and high-quality distributed governance.

Status

contract. All changes to privileged operations may need to be mediated with necessary timelocks.

Eventually, activate the normal on-chain community-based governance life-cycle and ensure the in-

17/19

PeckShield Audit Report #: 2025-187

Public

4 Conclusion

In this audit, we have analyzed the design and implementation of the Daily Earn Lockup contract in
AVA. It is a token lockup and reward system with multiple membership tiers. Users may lock ERC20
tokens for fixed periods to earn rewards, with higher membership tiers offering better terms and
possible NFT-based bonus rates. It supports delayed and immediate withdrawals (the latter incurring a
small fee), as well as administrative controls for pausing, user activation/deactivation, and updating
membership parameters. The current code base is well structured and neatly organized. Those
identified issues are promptly confirmed and fixed.

Meanwhile, we need to emphasize that Solidity-based smart contracts as a whole are still in
an early, but exciting stage of development. To improve this report, we greatly appreciate any
constructive feedbacks or suggestions, on our methodology, audit findings, or potential gaps in

scope/coverage.

18/19 PeckShield Audit Report #: 2025-187

Public

References

[1] MITRE. CWE-287: Improper Authentication. https://cwe.mitre.org/data/definitions/287.html.

[2] MITRE. CWE-563: Assignment to Variable without Use. https://cwe.mitre.org/data/
definitions/563.html.

[3] MITRE. CWE-841: Improper Enforcement of Behavioral Workflow. https://cwe.mitre.org/data/

definitions/841.html.

[4] MITRE. CWE CATEGORY: 7PK - Security Features. https://cwe.mitre.org/data/definitions/

254 html.

[5] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/
1006.html.

[6] MITRE. CWE CATEGORY: Business Logic Errors. https://cwe.mitre.org/data/definitions/840.

html.
[7] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.html.

[8] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP _Risk Rating

Methodology.

[9] PeckShield. PeckShield Inc. https://www.peckshield.com.

19/19 PeckShield Audit Report #: 2025-187

https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/563.html
https://cwe.mitre.org/data/definitions/563.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/699.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com

	Introduction
	About AVA Daily Earn Lockup
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Possibly Missing Last Lockup Timestamp Update
	Possibly Double Rewards From Multiple User Deactivation
	Timely Reward Claims Upon Possible APR Change
	Trust Issue of Admin Keys

	Conclusion
	References

