
CertiK Assessed on Nov 26th, 2025

AVA Foundation Audit
Security Assessment

Executive Summary

Vulnerability Summary

3 Centralization 3 Multi-Sig
Centralization findings highlight privileged roles &

functions and their capabilities, or instances where the

project takes custody of users’ assets.

0 Critical

Critical risks are those that impact the safe functioning of

a platform and must be addressed before launch. Users

should not invest in any project with outstanding critical

risks.

1 Major 1 Resolved
Major risks may include logical errors that, under specific

circumstances, could result in fund losses or loss of

project control.

2 Medium 1 Partially Resolved, 1 Acknowledged Medium risks may not pose a direct risk to users’ funds,

but they can affect the overall functioning of a platform.

2 Minor 2 Resolved

Minor risks can be any of the above, but on a smaller

scale. They generally do not compromise the overall

integrity of the project, but they may be less efficient than

other solutions.

5 Informational 5 Resolved

Informational errors are often recommendations to

improve the style of the code or certain operations to fall

within industry best practices. They usually do not affect

the overall functioning of the code.

SUMMARY AVA FOUNDATION AUDIT

CertiK Assessed on Nov 26th, 2025

AVA Foundation Audit

The security assessment was prepared by CertiK.

TYPES

Staking

ECOSYSTEM

Ethereum (ETH)

METHODS

Formal Verification, Manual Review, Static Analysis

LANGUAGE

Solidity

TIMELINE

Preliminary comments published on 11/17/2025

Final report published on 11/26/2025

13
Total Findings

8
Resolved

3
Multi-Sig

1
Partially Resolved

1
Acknowledged

0
Declined

TABLE OF CONTENTS AVA FOUNDATION AUDIT

Summary

Executive Summary

Vulnerability Summary

Codebase

Audit Scope

Approach & Methods

Findings

AFA-02 : Centralization Related Risks

AFA-03 : Centralized Control Of Token Withdrawal

AFA-13 : Potential Risk Of User Fund Theft

AFA-04 : The `maxLockupAmountPerTotal` Can Be By-Passed When Updating The Users' Membership

AFA-05 : Missing Check If The User Id And Wallet Address Are Used

AFA-06 : Updating An Exist Membership Type's Lockup Condition Affects Users' Rewards

AFA-07 : Missing Zero Address Check

AFA-08 : Missing Unknown Membership Type Validation In `updateUserIdToMembershipType()` Function

AFA-01 : Design Logic Of The Reward Resource

AFA-09 : The Comparison Operator Prefer To Use '>=' Instead Of '>'

AFA-10 : The `amountNFTs` Only For The `SmartDiamond` Membership Type.

AFA-11 : The Potential Fee-On-Transfer Token

AFA-12 : Unused Function

Appendix

Disclaimer

TABLE OF CONTENTS AVA FOUNDATION AUDIT

CODEBASE AVA FOUNDATION AUDIT

Repository

https://github.com/AVA-Foundation/ava-lockup-contracts

Commit

d807a5fbfab620e529e23c70bc60948f2f311dae

a1956a3eee93b6246fd4aaceaefc8c8db6863b9f

a25e0028d5ce293abc8c20e72add11de8d2ba0ba

CODEBASE AVA FOUNDATION AUDIT

https://github.com/AVA-Foundation/ava-lockup-contracts
https://github.com/AVA-Foundation/ava-lockup-contracts/tree/d807a5fbfab620e529e23c70bc60948f2f311dae/contracts
https://github.com/AVA-Foundation/ava-lockup-contracts/tree/a1956a3eee93b6246fd4aaceaefc8c8db6863b9f/contracts
https://github.com/AVA-Foundation/ava-lockup-contracts/tree/a25e0028d5ce293abc8c20e72add11de8d2ba0ba/contracts

AUDIT SCOPE AVA FOUNDATION AUDIT

AVA-Foundation/ava-lockup-contracts

DailyEarnLockUp.sol

OwnPauseAuth.sol

AUDIT SCOPE AVA FOUNDATION AUDIT

APPROACH & METHODS AVA FOUNDATION AUDIT

This audit was conducted for AVA Foundation to evaluate the security and correctness of the smart contracts associated with

the AVA Foundation Audit project. The assessment included a comprehensive review of the in-scope smart contracts. The

audit was performed using a combination of Formal Verification, Manual Review, and Static Analysis.

The review process emphasized the following areas:

Architecture review and threat modeling to understand systemic risks and identify design-level flaws.

Identification of vulnerabilities through both common and edge-case attack vectors.

Manual verification of contract logic to ensure alignment with intended design and business requirements.

Dynamic testing to validate runtime behavior and assess execution risks.

Assessment of code quality and maintainability, including adherence to current best practices and industry standards.

The audit resulted in findings categorized across multiple severity levels, from informational to critical. To enhance the

project’s security and long-term robustness, we recommend addressing the identified issues and considering the following

general improvements:

Improve code readability and maintainability by adopting a clean architectural pattern and modular design.

Strengthen testing coverage, including unit and integration tests for key functionalities and edge cases.

Maintain meaningful inline comments and documentations.

Implement clear and transparent documentation for privileged roles and sensitive protocol operations.

Regularly review and simulate contract behavior against newly emerging attack vectors.

APPROACH & METHODS AVA FOUNDATION AUDIT

FINDINGS AVA FOUNDATION AUDIT

This report has been prepared for AVA Foundation to identify potential vulnerabilities and security issues within the reviewed

codebase. During the course of the audit, a total of 13 issues were identified. Leveraging a combination of Formal

Verification, Manual Review & Static Analysis the following findings were uncovered:

ID Title Category Severity Status

AFA-02 Centralization Related Risks Centralization Centralization 2/3 Multi-Sig

AFA-03
Centralized Control Of Token

Withdrawal
Centralization Centralization 2/3 Multi-Sig

AFA-13 Potential Risk Of User Fund Theft
Design Issue,

Centralization
Centralization 2/3 Multi-Sig

AFA-04

The maxLockupAmountPerTotal Can

Be By-Passed When Updating The

Users' Membership

Logical Issue Major Resolved

AFA-05
Missing Check If The User Id And

Wallet Address Are Used
Logical Issue Medium Partially Resolved

AFA-06

Updating An Exist Membership Type's

Lockup Condition Affects Users'

Rewards

Volatile Code Medium Acknowledged

AFA-07 Missing Zero Address Check Volatile Code Minor Resolved

AFA-08

Missing Unknown Membership Type

Validation In

updateUserIdToMembershipType()

Function

Coding Issue Minor Resolved

AFA-01
Design Logic Of The Reward

Resource
Design Issue Informational Resolved

FINDINGS AVA FOUNDATION AUDIT

13
Total Findings

0
Critical

3
Centralization

1
Major

2
Medium

2
Minor

5
Informational

ID Title Category Severity Status

AFA-09
The Comparison Operator Prefer To

Use '>=' Instead Of '>'
Logical Issue Informational Resolved

AFA-10
The amountNFTs Only For The

SmartDiamond Membership Type.
Volatile Code Informational Resolved

AFA-11 The Potential Fee-On-Transfer Token Volatile Code Informational Resolved

AFA-12 Unused Function Code Optimization Informational Resolved

FINDINGS AVA FOUNDATION AUDIT

AFA-02 Centralization Related Risks

Category Severity Location Status

Centralization Centralization 2/3 Multi-Sig

Description

In the contract OwnPauseAuth , the role owner has authority over the following functions:

grantAuthorized()

revokeAuthorized()

pause()

unpause()

Any compromise to the owner account may allow an attacker to arbitrarily assign or strip privileged operators and globally

pause or resume all inheriting protocol functionality, enabling censorship or shutdown.

In the contract DailyEarnLockUp , the role owner has authority over the following functions:

withdrawByAdmin()

takeImmediateWithdrawalFeeCollected()

setMembershipTypeToCondition()

setImmediateWithdrawalFee()

setCommunityWallet()

setMaxTotalLockedAmount()

updateCommonMinLockupAmount()

updateCommonWithdrawPeriod()

Any compromise to the owner account may allow an attacker to drain staked tokens, seize fee revenue, and arbitrarily

rewrite core economic parameters (lockup conditions, fees, withdrawal caps, treasury recipient), letting them expropriate user

funds or reconfigure the program at will.

In the contract DailyEarnLockUp , the role authorized operator has authority over the following functions:

deactivateUser()

activateUser()

initUserData()

updateUserIdToWalletAddress()

updateUserIdToAmountNFTs()

updateUserIdToMembershipType()

AFA-02 AVA FOUNDATION AUDIT

Any compromise to an authorized operator account may allow an attacker to block or restore users, rewrite wallet

mappings, and reshuffle membership tiers and NFT-based bonuses, enabling targeted censorship, diversion of rewards, or

forced forfeiture of withdrawal rights.

Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security operation and level of

decentralization, which in most cases cannot be resolved entirely at the present stage. We advise the client to carefully

manage the privileged account's private key to avoid any potential risks of being hacked. In general, we strongly recommend

centralized privileges or roles in the protocol be improved via a decentralized mechanism or smart-contract-based accounts

with enhanced security practices, e.g., multisignature wallets.

Indicatively, here are some feasible suggestions that would also mitigate the potential risk at a different level in terms of short-

term, long-term and permanent:

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a single point of key

management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the private key

compromised;

AND

A medium/blog link for sharing the timelock contract and multi-signers addresses information with the public audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information with the public

audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles.

OR

Remove the risky functionality.

AFA-02 AVA FOUNDATION AUDIT

Alleviation

[AVA Foundation, 11/26/2025]: The team acknowledged the issue and adopted the multisign solution to ensure the private

key management process at the current stage. The DailyEarnLockUp contract has transferred the ownership to a Gnosis

Safe contract with 2/3 signers in the sensitive function signing process.

Grant Role transaction hash for Gnosis Safe:

0x34595881f1d17f33e87c720c632cbd32fe021b0c15ab9f1ad5a9d54e9d0f56dd, Gnosis safe contract address:

eth:0x58653987Ff3837ADBE6383F670f6935fcDE521b0

The 3 multisign addresses:

1. EOA:0xA5CbE8c764323f78c023F9342Dc867b10fb57C3f]

2. EOA:0x9ea99109E1b1Aa7e83C028391FB2D038fa6a4174

3. EOA:0x73524D7f64365a63Cd0F99edddAEa18370b83Dc7

The contract's current community wallet is also a Gnosis Safe contract with 2/3 signers,

eth:0xE234857A497deCf6239911C8190c195a0eaBB638.

The 3 multisign addresses:

1. EOA:0xA5CbE8c764323f78c023F9342Dc867b10fb57C3f,

2. EOA:0x9ea99109E1b1Aa7e83C028391FB2D038fa6a4174,

3. EOA:0x73524D7f64365a63Cd0F99edddAEa18370b83Dc7.

[CertiK, 11/26/2025]: While this strategy has indeed reduced the risk, it's crucial to note that it has not completely eliminated

it. CertiK strongly encourages the project team to periodically revisit the private key security management of all above-listed

addresses.

AFA-02 AVA FOUNDATION AUDIT

https://etherscan.io/tx/0x34595881f1d17f33e87c720c632cbd32fe021b0c15ab9f1ad5a9d54e9d0f56dd

AFA-03 Centralized Control Of Token Withdrawal

Category Severity Location Status

Centralization Centralization DailyEarnLockUp.sol (pre): 774 2/3 Multi-Sig

Description

The withdrawByAdmin function in the DailyEarnLockUp contract is considered a major centralization risk. Any

compromise to the owner accounts may allow the hacker to take advantage of this authority and withdraw all user locked

funds from the DailyEarnLockUp contract.

Additionally, addresses in the authorized list can change a user's membership type to Unknown . As a result, the user's asset

withdrawal is blocked because the transaction reverts when validating the membership type during the withdrawal process.

294 function _validateWithdrawRequest(

295 uint256 withdrawnAmount,

296 string memory userId,

297 address walletAddress,

298 bool isImmediate

299) private view {

300

301

302 MembershipType membershipType = userIdToMembershipType[userId];

303 require(

304 @> membershipType != MembershipType.Unknown,

305 "userId does not have any associated membership type"

306);

Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security operation and level of

decentralization, which in most cases cannot be resolved entirely at the present stage. We advise the client to carefully

manage the privileged account's private key to avoid any potential risks of being hacked. In general, we strongly recommend

centralized privileges or roles in the protocol be improved via a decentralized mechanism or smart-contract-based accounts

with enhanced security practices, e.g., multisignature wallets. Indicatively, here are some feasible suggestions that would

also mitigate the potential risk at a different level in terms of short-term, long-term and permanent:

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a single point of key

management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

AFA-03 AVA FOUNDATION AUDIT

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the private key

compromised;

AND

A medium/blog link for sharing the timelock contract and multi-signers addresses information with the public audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information with the public

audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles.

OR

Remove the risky functionality.

Alleviation

[AVA Foundation, 11/26/2025]: The team acknowledged the issue and adopted the multisign solution to ensure the private

key management process at the current stage. The DailyEarnLockUp contract has transferred the ownership to a Gnosis

Safe contract with 2/3 signers in the sensitive function signing process.

Grant Role transaction hash for Gnosis Safe:

0x34595881f1d17f33e87c720c632cbd32fe021b0c15ab9f1ad5a9d54e9d0f56dd, Gnosis safe contract address:

eth:0x58653987Ff3837ADBE6383F670f6935fcDE521b0

The 3 multisign addresses:

1. EOA:0xA5CbE8c764323f78c023F9342Dc867b10fb57C3f]

2. EOA:0x9ea99109E1b1Aa7e83C028391FB2D038fa6a4174

3. EOA:0x73524D7f64365a63Cd0F99edddAEa18370b83Dc7

The contract's current community wallet is also a Gnosis Safe contract with 2/3 signers,

eth:0xE234857A497deCf6239911C8190c195a0eaBB638.

The 3 multisign addresses:

1. EOA:0xA5CbE8c764323f78c023F9342Dc867b10fb57C3f,

2. EOA:0x9ea99109E1b1Aa7e83C028391FB2D038fa6a4174,

AFA-03 AVA FOUNDATION AUDIT

https://etherscan.io/tx/0x34595881f1d17f33e87c720c632cbd32fe021b0c15ab9f1ad5a9d54e9d0f56dd

3. EOA:0x73524D7f64365a63Cd0F99edddAEa18370b83Dc7.

[CertiK, 11/26/2025]: While this strategy has indeed reduced the risk, it's crucial to note that it has not completely eliminated

it. CertiK strongly encourages the project team to periodically revisit the private key security management of all above-listed

addresses.

AFA-03 AVA FOUNDATION AUDIT

AFA-13 Potential Risk Of User Fund Theft

Category Severity Location Status

Design Issue, Centralization Centralization DailyEarnLockUp.sol (fix-1119): 773 2/3 Multi-Sig

Description

The updateUserIdToWalletAddress() function assigns a new wallet address to an existing user ID associated with a valid

user. Any compromise of the central authority addresses could allow an attacker to redirect wallet bindings and steal user

funds.

773 function updateUserIdToWalletAddress(

774 string calldata userId,

775 address walletAddress

776) external isAuthorized {

777 require(walletAddress != address(0), "Invalid wallet address");

778 require(bytes(userId).length > 0, "Invalid userId");

779 require(

780 bytes(walletAddressToUserId[walletAddress]).length == 0,

781 "Wallet address in use"

782);

783

784 // If userId already has a wallet address, we need to clear it first.

785 if (userIdToWalletAddress[userId] != address(0)) {

786 walletAddressToUserId[userIdToWalletAddress[userId]] = "";

787 }

788

789 userIdToWalletAddress[userId] = walletAddress;

790 walletAddressToUserId[walletAddress] = userId;

791

792 emit EvtUpdateUserIdToWalletAddress(userId, walletAddress);

793 }

Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security operation and level of

decentralization, which in most cases cannot be resolved entirely at the present stage. We advise the client to carefully

manage the privileged account's private key to avoid any potential risks of being hacked. In general, we strongly recommend

centralized privileges or roles in the protocol be improved via a decentralized mechanism or smart-contract-based accounts

with enhanced security practices, e.g., multisignature wallets.

Indicatively, here are some feasible suggestions that would also mitigate the potential risk at a different level in terms of short-

term, long-term and permanent:

Short Term:

AFA-13 AVA FOUNDATION AUDIT

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a single point of key

management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the private key

compromised;

AND

A medium/blog link for sharing the timelock contract and multi-signers addresses information with the public audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information with the public

audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles.

OR

Remove the risky functionality.

Alleviation

[AVA Foundation, 11/26/2025]: The team acknowledged the issue and adopted the multisign solution to ensure the private

key management process at the current stage. The DailyEarnLockUp contract has transferred the ownership to a Gnosis

Safe contract with 2/3 signers in the sensitive function signing process.

Grant Role transaction hash for Gnosis Safe:

0x34595881f1d17f33e87c720c632cbd32fe021b0c15ab9f1ad5a9d54e9d0f56dd, Gnosis safe contract address:

eth:0x58653987Ff3837ADBE6383F670f6935fcDE521b0

The 3 multisign addresses:

1. EOA:0xA5CbE8c764323f78c023F9342Dc867b10fb57C3f]

2. EOA:0x9ea99109E1b1Aa7e83C028391FB2D038fa6a4174

3. EOA:0x73524D7f64365a63Cd0F99edddAEa18370b83Dc7

AFA-13 AVA FOUNDATION AUDIT

https://etherscan.io/tx/0x34595881f1d17f33e87c720c632cbd32fe021b0c15ab9f1ad5a9d54e9d0f56dd

The contract's current community wallet is also a Gnosis Safe contract with 2/3 signers,

eth:0xE234857A497deCf6239911C8190c195a0eaBB638.

The 3 multisign addresses:

1. EOA:0xA5CbE8c764323f78c023F9342Dc867b10fb57C3f,

2. EOA:0x9ea99109E1b1Aa7e83C028391FB2D038fa6a4174,

3. EOA:0x73524D7f64365a63Cd0F99edddAEa18370b83Dc7.

[CertiK, 11/26/2025]: While this strategy has indeed reduced the risk, it's crucial to note that it has not completely eliminated

it. CertiK strongly encourages the project team to periodically revisit the private key security management of all above-listed

addresses.

AFA-13 AVA FOUNDATION AUDIT

AFA-04 The maxLockupAmountPerTotal Can Be By-Passed When

Updating The Users' Membership

Category Severity Location Status

Logical Issue Major DailyEarnLockUp.sol (pre): 338, 738, 807 Resolved

Description

The withdrawRequestSubmit splits the user’s principal into two parts, the stats.lockedAmount and the

stats.withdrawReqAmount :

function withdrawRequestSubmit(

 //code snippet

 LockupStats storage stats = userIdToLockupStats[userId];

 stats.lockedAmount -= withdrawnAmount;

 stats.withdrawReqTimeStamp = block.timestamp;

 stats.withdrawReqAmount = withdrawnAmount;

 //code snippet

Then, the function withdrawRequestCancel() sum those two parts rewards, by indirectly calling

getEarnAmountFromLockupStats() and the getEarnAmountFromWithdrawRequest() function:

AFA-04 AVA FOUNDATION AUDIT

 //withdrawRequestCancel->_claimReward->getEarnAmountFromLockupStats

 function getEarnAmountFromLockupStats(

 address walletAddress

) public view returns (uint256, uint256) {

 string memory userId = _getUserId(walletAddress);

 LockupStats memory stats = userIdToLockupStats[userId];

 return

 _getEarnAmount(

 walletAddress,

 stats.lockedAmount,

 stats.lastTimeStamp

);

 }

 //withdrawRequestCancel->_claimRewardFromWithdrawRequest-

>getEarnAmountFromWithdrawRequest

 function getEarnAmountFromWithdrawRequest(

 address walletAddress

) public view returns (uint256, uint256) {

 string memory userId = _getUserId(walletAddress);

 LockupStats memory stats = userIdToLockupStats[userId];

 return

 _getEarnAmount(

 walletAddress,

 stats.withdrawReqAmount,

 stats.withdrawReqTimeStamp

);

 }

Though, there is a check in the _validateWithdrawRequest function tries to ensure that the sum of stats.lockedAmount

and the stats.withdrawReqAmount share the same cap:

AFA-04 AVA FOUNDATION AUDIT

 function _validateWithdrawRequest(

 uint256 withdrawnAmount,

 string memory userId,

 address walletAddress,

 bool isImmediate

) private view {

 //codesnippet

 if (!isImmediate) {

 require(

 stats.withdrawReqTimeStamp == 0,

 "One withdrawal request already exists"

);

 }

 //codesnippet

But, the functions(The updateUserIdToMembershipType and the setMembershipTypeToCondition function) that are able

to update the membership can still lead to the cap maxLockupAmountPerTotal being by-passed.

Scenario

Exploit steps:

Setup: Alices has lockedAmount L that is double of the current membership cap C =

membershipTypeToCondition[M].maxLockupAmountPerTotal (like a membership downgrade or owner reducing C).

Step 1 : Alice calls withdrawRequestSubmit with withdrawnAmount as C so that both parts(the stats.lockedAmount

and the stats.withdrawReqAmount) are C.

Step 2 : Alice waits t seconds to accrue rewards on both buckets.

Step 3 : Alice calls withdrawRequestCancel . The function will:

Pay _claimReward on the remaining locked part (base min(remaining, C))

Pay _claimRewardFromWithdrawRequest on the pending part (base min(W, C))

Merge the two buckets back

Step 4 : Repeats step 2 and step 3 get the extra rewards.

Example: Suppose C = 10,000 and the user’s L = 20,000 after a legitimate membership downgrade or the owner reducing C.

By submitting W = 10,000 and later cancelling, the user is paid interest over t seconds on 10,000 (remaining) + 10,000

(pending) = 20,000 instead of being capped at 10,000.

Proof of Concept

PoC:

AFA-04 AVA FOUNDATION AUDIT

 function setUp() public {

 token = new ERC20Mock();

 lockUp = new DailyEarnLockUp(address(token), COMMUNITY);

 // register test user so it can call lockup/claim

 lockUp.grantAuthorized(address(this));

 lockUp.initUserData(

 USER_ID,

 DailyEarnLockUp.MembershipType.SmartSteel,

 USER,

 0

);

 token.mint(USER, USER_BALANCE);

 vm.prank(USER);

 token.approve(address(lockUp), type(uint256).max);

 }

 function testMaxLockupCapBypassViaMembershipUpdate() public {

 uint256 initialLock = 20_000 ether;

 // SmartSteel maxLockupAmountPerTotal: 10_000 * 1e18

 uint256 downgradedCap = 10_000 ether;

 // provide reward tokens so the contract can pay out earns

 token.mint(address(lockUp), USER_BALANCE);

 // upgrade to a membership type that allows a large lockup

 // SmartSilver maxLockupAmountPerTotal: 50_000 * 1e18

 lockUp.updateUserIdToMembershipType(

 USER_ID,

 DailyEarnLockUp.MembershipType.SmartSilver,

 0

);

 vm.prank(USER);

 lockUp.lockup(initialLock);// Double of the cap

 // downgrade back to a restrictive membership with a low cap

 lockUp.updateUserIdToMembershipType(

 USER_ID,

 DailyEarnLockUp.MembershipType.SmartSteel,

 0

);

 vm.prank(USER);

 lockUp.withdrawRequestSubmit(downgradedCap);

AFA-04 AVA FOUNDATION AUDIT

 vm.warp(block.timestamp + 2 days);

 (uint256 earnLocked,) = lockUp.getEarnAmountFromLockupStats(USER);

 (uint256 earnWithdrawReq,) = lockUp.getEarnAmountFromWithdrawRequest(USER);

 // 2 days' earn for a max lockup, that equals to 2739726027397260273

 uint256 earn = (downgradedCap *

 lockUp.getTotalApr(USER)) *

 2 days / (1e3 * 365 days);

 // each part has a rewards

 assertEq(earnLocked, earn, "locked bucket should accrue rewards after

time");

 assertEq(

 earnWithdrawReq,

 earn,

 "withdraw request bucket should accrue rewards after time"

);

 uint256 balanceBefore = token.balanceOf(USER);

 vm.prank(USER);

 lockUp.withdrawRequestCancel();

 uint256 balanceAfter = token.balanceOf(USER);

 // The reward exceeds the cap

 assertEq(

 balanceAfter - balanceBefore,

 earnLocked + earnWithdrawReq,

 "Cancel pays both locked and pending buckets"

);

 }

Ran 1 test for test/DailyEarnLockUp.t.sol:DailyEarnLockUpTest

[PASS] testMaxLockupCapBypassViaMembershipUpdate() (gas: 299168)

Suite result: ok. 1 passed; 0 failed; 0 skipped; finished in 3.89ms (904.58µs CPU

time)

Recommendation

Consider refactoring the reward calculation logic to enforce the cap across the combined total of lockedAmount and

withdrawReqAmount , rather than applying the cap independently to each bucket.

Alleviation

[AVA Foundation, 11/19/2025]: The team heeded the advice and resolved the issue by refactoring the reward calculation

logic to enforce the cap across the combined total of lockedAmount and withdrawReqAmount , in commit

4fcd16c6eeb66c12cab71f248cbd434d5fddbf4f

AFA-04 AVA FOUNDATION AUDIT

https://github.com/AVA-Foundation/ava-lockup-contracts/commit/4fcd16c6eeb66c12cab71f248cbd434d5fddbf4f

AFA-05 Missing Check If The User Id And Wallet Address Are Used

Category Severity Location Status

Logical Issue Medium DailyEarnLockUp.sol (pre): 690 Partially Resolved

Description

The updateUserIdToWalletAddress function allows an authorized role to update the wallet address for a specific user ID, it

neither checks if the userId is used nor checks if the walletAddress is used, leads to side effects.

Missing Check If User Id is Used

If the user id is used, the updateUserIdToWalletAddress function simply clear the

walletAddressToUserId[userIdToWalletAddress[userId]] . As a result, the previous wallet associated to the user id loses

the access of the wallet.

Exploit steps:

1. Ensure there is an existing mapping: userIdToWalletAddress["Alice"] = A and walletAddressToUserId[A] = "Alice".

2. Call the updateUserIdToWalletAddress("Alice", B)

3. Post-state:

walletAddressToUserId[A] = ""

walletAddressToUserId[B] = Alice, userIdToWalletAddress[Alice] = B

As a result, wallet A loses access to the user Alice, due to any authorized user can invoke the

updateUserIdToWalletAddress function, it is a risk that users' wallet would lost access to their fund without any notification

if any authorized invoke the function with the users' user id.

Missing Check If Wallet Address is Used

Exploit steps:

1. Ensure there is an existing mapping: userIdToWalletAddress["Alice"] = A and walletAddressToUserId[A] = "Alice".

2. Call updateUserIdToWalletAddress("Bob", A).

3. Post-state:

userIdToWalletAddress["Alice"] == A (unchanged; not cleaned)

walletAddressToUserId[A] == "Bob" (overwritten),

userIdToWalletAddress["Bob"] == A This leaves two userIds ("Bob" and "Alice") effectively pointing to the same

wallet A through different directions of the mapping, results in Alice losing her funds.

it does not check if the wallet address(the walletAddressToUserId[walletAddress]) is already mapped to a previous user.

If the same walletAddress is assigned to multiple user IDs, previous users linked to that address will lose access to their

AFA-05 AVA FOUNDATION AUDIT

funds.

Recommendation

Recommend refactoring the code to mitigate the potential risk of user fund loss.

Alleviation

[AVA Foundation, 11/19/2025]: The team heeded the advice and resolved one of the issues, Missing Check If Wallet

Address is Used, by checking if the wallet address is used or not, in the commit

60b8ebba011b0187a4394ce90a502afa2133766b

[AVA Foundation, 11/20/2025]: The team acknowledged the finding of Missing Check If User Id is Used, and replied that's

our design choice because we allow the currently-used "userId" to be updated with a new wallet address. Thus, the previous

wallet address will be set to empty "userId" so that it losts any access. This is done by one of our authorized accounts.

AFA-05 AVA FOUNDATION AUDIT

https://github.com/AVA-Foundation/ava-lockup-contracts/commit/60b8ebba011b0187a4394ce90a502afa2133766b

AFA-06 Updating An Exist Membership Type's Lockup Condition Affects
Users' Rewards

Category Severity Location Status

Volatile Code Medium DailyEarnLockUp.sol (pre): 807 Acknowledged

Description

The setMembershipTypeToCondition function allows the contract owner to modify the lockup conditions for an existing

membership type. Since the computation of user rewards in the _getEarnAmount function is based on parameters such as

lockedAmountChecked and total APR, any change to the membership type's lockup conditions directly influences the value

of rewards accrued by users sharing that membership type.

 function _getEarnAmount(

 address walletAddress,

 uint256 lockedAmount,

 uint256 lastTimeStamp

) private view returns (uint256, uint256) {

 //code snippet

 uint256 lockedAmountChecked = _getLockedAmountChecked(

 walletAddress,

 lockedAmount

);

 // Determine the time elapsed since the last claim.

 uint256 timeElapsedSinceLastClaim = block.timestamp - lastTimeStamp;

 uint256 earn = (lockedAmountChecked *

 getTotalApr(walletAddress) *

 timeElapsedSinceLastClaim) / (PERCENT_FACTOR * 365 days);

 //code snippet

 }

Specifically, parameters like maxLockupAmountPerTotal , apr , aprExtraPerNFT , and maxAllowedAmountNFTs —all part

of the lockup conditions—are used in the reward calculation logic as shown below:

AFA-06 AVA FOUNDATION AUDIT

 function _getLockedAmountChecked(

 address walletAddress,

 uint256 lockedAmount

) private view returns (uint256) {

 //code snippet

 LockupCondition

 memory membershipTypeCondition = membershipTypeToCondition[

 membershipType

];

 if (lockedAmount > membershipTypeCondition.maxLockupAmountPerTotal) {

 return membershipTypeCondition.maxLockupAmountPerTotal;

 }

 //code snippet

 }

function getTotalApr(address walletAddress) public view returns (uint256) {

 //code snippet

 uint256 extraEarnRate = 0;

 if (membershipType == MembershipType.SmartDiamond) {

 uint256 amountNFTs = userIdToAmountNFTs[userId];

 if (amountNFTs > membershipTypeCondition.maxAllowedAmountNFTs) {

 amountNFTs = membershipTypeCondition.maxAllowedAmountNFTs;

 }

 extraEarnRate = (membershipTypeCondition.aprExtraPerNFT *

 amountNFTs);

 }

 return (membershipTypeCondition.apr + extraEarnRate);

 }

For instance, if the owner reduces maxLockupAmountPerTotal from 200_000 * 1e18 to 100_000 * 1e18 for the

SmartDiamond membership type, a user who previously locked 200_000 * 1e18 tokens would, after the update, only

accrue further rewards as if they had locked half that amount. This may result in users receiving lower rewards than expected

for the period in which they met previous criteria.

Without distributing pending rewards before altering these parameters, existing users may have their accrued rewards

recalculated under the new, potentially less favorable conditions. This approach can lead to unexpected reward reductions

for users who have met lockup requirements prior to the update.

Recommendation

It's recommended that before modifying the lockup conditions of an existing membership type, the contract should ensure all

users with that membership type automatically receive any pending rewards accrued under the previous conditions. This

prevents users from having their previously earned rewards negatively impacted by subsequent changes. Alternatively, the

contract can restrict updates to lockup conditions for membership types with active users, or implement logic to track rewards

based on the conditions in effect during the accrual period for each user.

AFA-06 AVA FOUNDATION AUDIT

Alleviation

[AVA Foundation, 11/19/2025]: We know and accept to live with this kind of risk.We will inform all the users to claim their

rewards before we modify the membership type condition.

AFA-06 AVA FOUNDATION AUDIT

AFA-07 Missing Zero Address Check

Category Severity Location Status

Volatile Code Minor DailyEarnLockUp.sol (pre): 788 Resolved

Description

Address is not validated before token transfer, potentially allowing the use of zero addresses and leading to unexpected

behavior. For example, transferring tokens to a zero address can result in a permanent loss of those tokens.

 function takeImmediateWithdrawalFeeCollected(

 address recipient,

 uint256 amount

) external isOwner {

 require(amount > 0, "Invalid amount");

 require(

 immediateWithdrawalFeeCollected >= amount,

 "Insufficient fee collected"

);

 immediateWithdrawalFeeCollected -= amount;

 lockupToken.safeTransfer(recipient, amount);

 emit EvtTakeImmediateWithdrawalFeeCollected(recipient, amount);

 }

Recommendation

It is recommended to add a zero-check for the passed-in address value to prevent fund loss.

Alleviation

[AVA Foundation, 11/19/2025]: The team heeded the advice and resolved the issue by adding a zero-check for the passed-

in address value in commit 1b6266813b40c250935f42730c2ca4d2446b6e90

AFA-07 AVA FOUNDATION AUDIT

https://github.com/AVA-Foundation/ava-lockup-contracts/commit/1b6266813b40c250935f42730c2ca4d2446b6e90

AFA-08 Missing Unknown Membership Type Validation In
updateUserIdToMembershipType() Function

Category Severity Location Status

Coding Issue Minor DailyEarnLockUp.sol (pre): 740 Resolved

Description

The updateUserIdToMembershipType() function is intended to update a user’s membership type. However, it currently

lacks logic to check whether the provided membershipType argument is set to Unknown . As a result, the user’s

membership type cannot be updated, and they are also unable to withdraw assets if it is set to Unknown .

738 function updateUserIdToMembershipType(

739 string memory userId,

740 MembershipType membershipType,

741 uint256 amountNFTs

742) external isAuthorized {

743 require(bytes(userId).length > 0, "Invalid userId");

744 require(

745 @> userIdToMembershipType[userId] != MembershipType.Unknown,

746 "User data not yet set. Pls use the function initUserData"

747);

748 require(

749 userIdToMembershipType[userId] != membershipType,

750 "UserId already has this membership type"

751);

752

753

754

755

// If the currently-locked amount > max lockup cap, user will need to manually

submit withdrawal req

756

757 userIdToMembershipType[userId] = membershipType;

Notice: A similar issue also exists in initUserData() function.

Recommendation

Recommend implementing logic to prevent the user's membership type from being updated to Unknown .

Alleviation

AFA-08 AVA FOUNDATION AUDIT

[AVA Foundation, 11/19/2025]: The team heeded the advice and resolved the issue by adding Unknown membership type

validation in commit a1956a3eee93b6246fd4aaceaefc8c8db6863b9f.

AFA-08 AVA FOUNDATION AUDIT

https://github.com/AVA-Foundation/ava-lockup-contracts/tree/a1956a3eee93b6246fd4aaceaefc8c8db6863b9f

AFA-01 Design Logic Of The Reward Resource

Category Severity Location Status

Design Issue Informational DailyEarnLockUp.sol (pre): 597 Resolved

Description

The DailyEarnLockUp contract allows users to deposit funds and earn rewards. However, according to the contract logic,

user deposits are the sole source of assets, which is insufficient to sustain the staking rewards.

587 (

588 uint256 earn,

589 uint256 timeElapsedSinceLastClaim

590) = getEarnAmountFromLockupStats(walletAddress);

591 if (earn > 0) {

592

// Update lastTimeStamp to the timestamp rounded up to the last full day.

593 LockupStats storage stats = userIdToLockupStats[userId];

594 stats.lastTimeStamp += timeElapsedSinceLastClaim;

595 stats.earnedAmount += earn;

596

597 @> lockupToken.safeTransfer(walletAddress, earn);

598 emit EvtClaim(walletAddress, earn);

599 return earn;

600 } else {

Recommendation

The audit team would like to inquire with the AVA Foundation regarding the design logic of reward resource.

Alleviation

[AVA Foundation, 11/19/2025]: That's our design choice. We know and accept this risk.

We can monitor the AVA balance on the contract to ensure that it still has at least a certain minimum balance for daily

rewards.

This minimum balance can be determined based on the totally-locked amount and the average APR per day.

AFA-01 AVA FOUNDATION AUDIT

AFA-09 The Comparison Operator Prefer To Use '>=' Instead Of '>'

Category Severity Location Status

Logical Issue Informational DailyEarnLockUp.sol (pre): 409 Resolved

Description

In the withdraw function, if the isImmediate is false, the function checks whether the minimum withdrawal period

requirement is satisfied using the following condition::

 require(

 block.timestamp >

 stats.withdrawReqTimeStamp + condition.withdrawPeriod,

 "Minimum withdraw period not met"

);

Using the > operator requires the caller to wait until the current block timestamp strictly exceeds the sum of

withdrawReqTimeStamp and withdrawPeriod . This means users can only withdraw after the exact withdrawal period has

passed, not at the precise moment it ends. Replacing > with >= aligns the logic with typical expectations, allowing

withdrawals as soon as the period concludes and matching common time-based restriction patterns.

Recommendation

It is recommended that update the comparison operator to meet the design.

Alleviation

[AVA Foundation, 11/19/2025]: The team heeded the advice and resolved the issue by updating the comparison operator in

commit 42956105d47a43130b898bb78ec92336776988a9

AFA-09 AVA FOUNDATION AUDIT

https://github.com/AVA-Foundation/ava-lockup-contracts/commit/42956105d47a43130b898bb78ec92336776988a9

AFA-10 The amountNFTs Only For The SmartDiamond Membership

Type.

Category Severity Location Status

Volatile Code Informational DailyEarnLockUp.sol (pre): 658 Resolved

Description

The initUserData function sets user data including userId , amountNFTs , etc. However, the amountNFTs is only for the

SmartDiamond membership type, but the initUserData does not check for it.

 // Mapping from userId to amount of NFTs owned only for SmartDiamond membership

type.

 mapping(string => uint256) public userIdToAmountNFTs;

 function initUserData(

 string memory userId,

 MembershipType membershipType,

 address walletAddress,

 uint256 amountNFTs

) external isAuthorized {

 //code snippet

 userIdToAmountNFTs[userId] = amountNFTs;

 //code snippet

 }

Recommendation

It is recommended that only update the amountNFTs for the SmartDiamond membership type.

Alleviation

[AVA Foundation, 11/19/2025]: The team heeded the advice and resolved the issue by only updating the amountNFTs for

the SmartDiamond membership type in commit a1956a3eee93b6246fd4aaceaefc8c8db6863b9f

AFA-10 AVA FOUNDATION AUDIT

https://github.com/AVA-Foundation/ava-lockup-contracts/commit/a1956a3eee93b6246fd4aaceaefc8c8db6863b9f

AFA-11 The Potential Fee-On-Transfer Token

Category Severity Location Status

Volatile Code Informational DailyEarnLockUp.sol (pre): 136 Resolved

Description

In lockup, the contract trusts the lockedAmount parameter to update accounting, without verifying how many tokens were

actually received. Specifically, it executes:

 lockupToken.safeTransferFrom(msg.sender, address(this), lockedAmount);

 userIdToLockupStats[userId].lockedAmount += lockedAmount;

 totalLockedAmount += lockedAmount;

There is no balance delta check. If lockupToken is fee-on-transfer/deflationary token, the contract credits the user with a

larger principal than it received. This over-credited principal is then used by _claimReward (called inside lockup) to

compute and transfer rewards. As a result, a user can earn rewards on “phantom” tokens that were never deposited.

Recommendation

The audit team would like to confirm with the AVA Foundation that is the lockupToken an fee-on-tranfer Token

Alleviation

[AVA Foundation, 11/19/2025]: We ensure that the "lockupToken" is NOT fee-on-transfer/deflationary token.

AFA-11 AVA FOUNDATION AUDIT

AFA-12 Unused Function

Category Severity Location Status

Code Optimization Informational DailyEarnLockUp.sol (fix-1119): 357, 357 Resolved

Description

After the fix commit a1956a3eee93b6246fd4aaceaefc8c8db6863b9f, the private function

_claimRewardFromWithdrawRequest is deprecated, it can be removed.

Recommendation

It is recommended that removing the deprecated function.

Alleviation

[AVA Foundation, 11/21/2025]: The team heeded the advice and resolved the issue by removing the deprecated function, in

commit a25e0028d5ce293abc8c20e72add11de8d2ba0ba

AFA-12 AVA FOUNDATION AUDIT

https://github.com/AVA-Foundation/ava-lockup-contracts/tree/a1956a3eee93b6246fd4aaceaefc8c8db6863b9f/
https://github.com/AVA-Foundation/ava-lockup-contracts/commit/a25e0028d5ce293abc8c20e72add11de8d2ba0ba

APPENDIX AVA FOUNDATION AUDIT

Finding Categories

Categories Description

Coding Issue
Coding Issue findings are about general code quality including, but not limited to, coding mistakes,

compile errors, and performance issues.

Volatile Code
Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases and

may result in vulnerabilities.

Logical Issue Logical Issue findings indicate general implementation issues related to the program logic.

Centralization
Centralization findings detail the design choices of designating privileged roles or other centralized

controls over the code.

Design Issue
Design Issue findings indicate general issues at the design level beyond program logic that are not

covered by other finding categories.

APPENDIX AVA FOUNDATION AUDIT

DISCLAIMER CERTIK

This report is subject to the terms and conditions (including without limitation, description of services, confidentiality,

disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of services, and terms and conditions

provided to you (“Customer” or the “Company”) in connection with the Agreement. This report provided in connection with the

Services set forth in the Agreement shall be used by the Company only to the extent permitted under the terms and

conditions set forth in the Agreement. This report may not be transmitted, disclosed, referred to or relied upon by any person

for any purposes, nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or team. This report

is not, nor should be considered, an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts CertiK to perform a security assessment. This report does not provide any warranty or guarantee

regarding the absolute bug-free nature of the technology analyzed, nor do they provide any indication of the technologies

proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any particular project.

This report in no way provides investment advice, nor should be leveraged as investment advice of any sort. This report

represents an extensive assessing process intending to help our customers increase the quality of their code while reducing

the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that each company

and individual are responsible for their own due diligence and continuous security. CertiK’s goal is to help reduce the attack

vectors and the high level of variance associated with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing development. You agree that

your access and/or use, including but not limited to any services, reports, and materials, will be at your sole risk on an as-is,

where-is, and as-available basis. Cryptographic tokens are emergent technologies and carry with them high levels of

technical risk and uncertainty. The assessment reports could include false positives, false negatives, and other unpredictable

results. The services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY

PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS AVAILABLE” AND WITH ALL

FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED UNDER

APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY,

OR OTHERWISE WITH RESPECT TO THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT

LIMITING THE FOREGOING, CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL WARRANTIES ARISING FROM

COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE FOREGOING, CERTIK MAKES NO

WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR

OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF, WILL MEET CUSTOMER’S OR ANY

OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED RESULT, BE COMPATIBLE OR WORK WITH ANY

SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE SECURE, ACCURATE, COMPLETE, FREE OF HARMFUL

CODE, OR ERROR-FREE. WITHOUT LIMITATION TO THE FOREGOING, CERTIK PROVIDES NO WARRANTY OR

DISCLAIMER AVA FOUNDATION AUDIT

UNDERTAKING, AND MAKES NO REPRESENTATION OF ANY KIND THAT THE SERVICE WILL MEET CUSTOMER’S

REQUIREMENTS, ACHIEVE ANY INTENDED RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE,

APPLICATIONS, SYSTEMS OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY PERFORMANCE OR

RELIABILITY STANDARDS OR BE ERROR FREE OR THAT ANY ERRORS OR DEFECTS CAN OR WILL BE

CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES ANY

REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY, RELIABILITY, OR

CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE SERVICE. CERTIK WILL ASSUME NO

LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES, OR INACCURACIES OF CONTENT AND

MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND INCURRED AS A RESULT OF THE USE OF ANY

CONTENT, OR (II) ANY PERSONAL INJURY OR PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING

FROM CUSTOMER’S ACCESS TO OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY OF OR

CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE THIRD-PARTY

OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY PROVIDED TO

CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY PURPOSE NOT SPECIFICALLY

IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO, ANY OTHER PERSON WITHOUT

CERTIK’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER

BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE SOLELY FOR THE

BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF,

SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH REPRESENTATIONS AND WARRANTIES AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

REPRESENTATIONS OR WARRANTIES OR ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION

UNDER THIS AGREEMENT OR OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS OR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX, LEGAL,

REGULATORY, OR OTHER ADVICE.

DISCLAIMER AVA FOUNDATION AUDIT

Elevating Your Web3 Journey

Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia University, CertiK is

the largest blockchain security company that serves to verify the security and correctness of smart contracts and blockchain-

based protocols. Through the utilization of our world-class technical expertise, alongside our proprietary, innovative tech,

we’re able to support the success of our clients with best-in-class security, all whilst realizing our overarching vision; provable

trust for all throughout all facets of blockchain.

AVA Foundation Audit Security Assessment CertiK Assessed on Nov 26th, 2025 Copyright © CertiK

https://www.certik.com/
https://www.twitter.com/CertiK
https://t.me/CertiKCommunity
https://www.youtube.com/channel/UCCcFr6FTUeWDIqUdY8i1W5w
https://www.linkedin.com/company/certik/
https://discord.com/invite/dH8xQrnnjf

